1

mark Sub

(i) $\sqrt{(-6)^2 + 13^2} = 14.31782...$ so 14.3 N (3 s. f.)

M1 Accept $\sqrt{-6^2 + 13^2}$

A1

(ii) Resultant is $\begin{pmatrix} -6 \\ 13 \end{pmatrix} - \begin{pmatrix} -3 \\ 5 \end{pmatrix} = \begin{pmatrix} -3 \\ 8 \end{pmatrix}$

B1 May not be explicit. If diagram used it must have correct orientation. Give if final angle correct.

Require 270 + $\arctan \frac{8}{3}$

M1 Use of $\arctan\left(\pm\frac{8}{3}\right)$ or $\arctan\left(\pm\frac{3}{8}\right)$ ($\pm20.6^{\circ}$ or $\pm69.4^{\circ}$) or equivalent on **their** resultant

so 339.4439...° so 339°

A1 cao. Do not accept -21°.

3

2

(iii) $\begin{pmatrix} -3 \\ 5 \end{pmatrix} = 5\mathbf{a}$ so $(-0.6 \,\mathbf{i} + \mathbf{j}) \,\mathrm{m \, s}^{-2}$ change in velocity is $(-6 \,\mathbf{i} + 10 \,\mathbf{j}) \,\mathrm{m \, s}^{-1}$

M1 Use of N2L with accn used in vector form

A1 Any form. Units not required. isw.

F1 10**a** seen. Units not required. Must be a vector. [SC1 for $a = \sqrt{3^2 + 5^2} / 5 = 1.17$]

> 3 8

Question		n	Answer	Marks	Guidance
2	(i)	(A)	Distance travelled = Area under the graph	M1	Attempt to find area
			$\frac{1}{2} \times 4 \times 8 + \frac{1}{2} \times 4 \times (8 + 12) + 4 \times 12$	M1	Splitting into suitable parts
			104 m	A1	Cao
					Allow all 3 marks for 104 without any working
	(i)	(<i>B</i>)	Either		
			Working backwards from distance when $t = 12$	M1	
			$12 - \frac{(104 - 100)}{12}$	M1	Allow this mark for 0.33 Follow through from their total distance
			11.67 s	A1	Cao
			Or		
			Working forwards from when $t = 8$	M1	
			$8 + \frac{(100 - 56)}{12}$	M1	Allow this mark for 3.67 Follow through from their distance at time 8s
			11.67 s	A1	Cao
				[6]	
	(ii)		Substituting $t = 8$ gives $v = \frac{5}{2} \times 8 - \frac{1}{8} \times 8^2 = 12$	B1	
				[1]	

Question		Answer	Marks	Guidance
2	(iii)	Distance $= \int_0^{12} \left(\frac{5t}{2} - \frac{t^2}{8} \right) dt$	M1	Integratin v. Condone no limits.
		$\left[\frac{5t^2}{4} - \frac{t^3}{24}\right]_0^{12}$	A1	Condon no limits
		[180-72] (-[0])	M1	Substituting $t = 12$
		108 m	A1	
			[4]	
	(iv)	Model P: distance at $t = 11.35$ is 96.2	B1	Ca
		Model Q: distance at $t = 11.35$ is		
		$\left[\frac{5t^2}{4} - \frac{t^3}{24}\right]_0^{1135} = 100.1$	M1	Substituting 11.35 in their expression from part (iii)
		Model Q places the runner closer	E1	Cao from correct previous working for both models
			[3]	
	(v)	Model P: Greatest acceleration $\frac{8}{4} = 2 \text{ m s}^{-2}$	B1	
		Model Q: $a = \frac{dv}{dt} = \frac{5}{2} - \frac{t}{4}$	M1	Differentiating <i>v</i>
			A1	
		Model Q: Greatest acceleration is 2.5 m s ⁻²	B1	Award if correct answer seen
			[4]	

3		mark		
(i)	Area under curve $0.5 \times 2 \times 20 + 0.5 \times (20 + 10) \times 4 + 0.5 \times 10 \times 1$ $= 85 \text{ m}$	M1 B1 A1	Attempt to find any area under curve or use const accn results Any area correct (Accept 20 or 60 or 5 without explanation) cao	3
(ii)	$\frac{20-10}{4} = 2.5$ upwards	M1 A1 B1	$\Delta v/\Delta t$ accept ± 2.5 Accept -2.5 downwards (allow direction specified by diagram etc). Accept 'opposite direction to motion'.	3
(iii)	v = -2.5t + c $v = 20 when t = 2$ $v = -2.5t + 25$	M1 M1 A1	Allow their a in the form $v = \pm at + c$ or $v = \pm a(t-2) + c$ cao [Allow $v = 20 - 2.5(t-2)$] [Allow 2/3 for different variable to t used, e.g. x . Allow any variable name for speed]	3
(iv)	Falling with negligible resistance	E1	Accept 'zero resistance', or 'no resistance' seen.	1
(v)	$-1.5 \times 4 + 9.5 \times 2 + 7 = 20$ $-1.5 \times 36 + 9.5 \times 6 + 7 = 10$ $-1.5 \times 49 + 9.5 \times 7 + 7 = 0$	E1 E1	One of the results shown All three shown. Be generous about the 'show'.	2
(vi)	$\int_{2}^{7} (-1.5t^{2} + 9.5t + 7)dt$ $= \left[-0.5t^{3} + 4.75t^{2} + 7t \right]_{2}^{7}$ $= \left(-\frac{343}{2} + \frac{19 \times 49}{4} + 49 \right) - \left(-4 + 19 + 14 \right)$	M1 A1 A1 A1 A1 A1	Limits not required A1 for each term. Limits not required. Condone $+c$ Attempt to use both limits on an integrated expression Correct substitution in their expression including	
	= 81.25 m	A1	subtraction (may be left as an expression). cao.	7
	total	17	1	1